Cyclic representation and function difference representation of the Z_{n} Sklyanin algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 264951
(http://iopscience.iop.org/0305-4470/26/19/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:42

Please note that terms and conditions apply.

Cyclic representation and function difference representation of the $\boldsymbol{Z}_{\boldsymbol{n}}$ Sklyanin algebra

Bo-yu Hou \dagger, Kang-jie Shi $\dagger \ddagger$ and Zhong-xia Yang \dagger
\dagger Institute of Modern Physics, Northwest University, Xian 710069, People's Republic of China
\ddagger Center of Theoretical Physics, CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People's Republic of China

Received 16 October 1992

Abstract

We obtain the cyclic representation of Z_{n} Sklyanin algebra. From this we derive its function difference representation. When $n=2$, it coincides with the known result.

1. Introduction

Recently, there has been considerable attention and intensive study on quantum group theory. From the physics point of view, the quantum group can represent both the exchange relation symmetry of vertex operators in conformal field theory and the symmetry of the six-vertex model and other exactly solvable statistical models, which have triangular functions as their Boltzmann weights.

It is expected that Sklyanin algebra [1] plays a similar role in integrable-massive field theory [2], which has its exchange relations expressed by elliptic functions, and in some exactly solvable statistical models [3-8], which have their Boltzmann weights expressed in elliptic functions. They are reduced to the corresponding triangular models when the modular parameter approaches infinity.

Starting from the eight-vertex model [3], Sklyanin [7] derived the sl(n) Sklyanin algebra for $n=2$. He subsequently constructed the single variable function representation of the algebra, and consequently the classification of the representations. Using the limit of these representations, he was the first to give the highest weight representation and the minimal cyclic representation of the quantum group $\mathrm{sl}_{q}(2)$.

Starting from $n \otimes n[3,9]$ model, Cherednik [10] generalized the Sklyanin algebra to the generic sl (n). Wei et al [11, 12] worked out the structure constants for the algebra. The authors of this paper gave explicitly [13] the process by which Sklyanin algebra is reduced to $\mathrm{U}_{q}(\mathrm{si}(n))$. Zhou et al $[14,15]$ constructed the tensor product representation of the Sklyanin algebra through fusion. However, the explicit expressions of the cyclic representation have yet to be found.

Hasegawa and Yamada [16] managed to construct the Yang-Baxter operator $L(u)$ for the eight-vertex model by using the cyclic representation [1] of Sklyanin algebra. It was found that the operator $L(u)$ could be factorized, which is similar to the triangular case in [18, 19]. They further derived the broken Z_{n} model [7, 8]. Bazhanov et al [19] point out that the factorizability of $L(u)$ means that we could construct the IRF model from the corresponding vertex model. Recently, making use of this approach, Quano
[20] worked out the cyclic representation of the $L(u)$ operator for the Sklyanin algebra. (He also gave a new type of $A_{n}^{(1)}$ Kashiwara-Miwa model [6, 7].)

In this paper, we give an explicit cyclic representation of the Sklyanin operator S_{α}, and we find that it has $2 n-1$ parameters, which is the same number as for the minimal cyclic representation of quantum group $\mathrm{U}_{q}(\mathrm{sl}(n))$. In the mean time, the number of parameters for the cyclic representation of the $L(u)$ operator is also increased. On the other hand, the difference expression of the Sklyanin algebra operator, which is highly lauded by Smith [22], is the foundation [1] of representation theory for the $n=2$ case. We can make further study of this expression and compare it with its triangular limit, the quantum algebra.
1.1. The intertwiner for $A_{n-1}^{(1)}$ IRF model and Z_{n} symmetric vertex model and its factorized YBE operator $L(z)$
1.1.1. The Z_{n} symmetric Belavin R-matrix and Sklyanin algebra (sA). For a given positive integer n, we define $n \otimes n$ matrices g, h, I_{α} :

$$
\begin{align*}
& g_{j k}=\omega^{j} \delta_{j k} \quad h_{j k}=\delta_{j+1, k} \quad \omega=\exp \left(\frac{2 \pi \mathrm{i}}{n}\right) \tag{1}\\
& I_{\alpha}=I_{\left(\alpha,, a_{2}\right)}=g^{\alpha_{2} h^{\alpha_{1}}} .
\end{align*}
$$

Let $I_{\alpha}^{(j)}=I \otimes \ldots \otimes I_{\alpha} \otimes \ldots, I_{\alpha}$ is at the j th space

$$
\begin{align*}
& W_{\alpha}(z)=\theta\left[\begin{array}{l}
\frac{1}{2}+\frac{\alpha_{2}}{n} \\
\frac{1}{2}+\frac{\alpha_{1}}{n}
\end{array}\right]\left(z+\frac{w}{n}, \tau\right)\left\langle\theta\left[\begin{array}{c}
\frac{1}{2}+\frac{\alpha_{2}}{n} \\
\frac{1}{2}+\frac{\alpha_{1}}{n}
\end{array}\right]\left(\frac{w}{n}, \tau\right) \equiv \frac{\sigma_{\alpha}\left(z+\frac{w}{n}\right)}{\sigma_{\alpha}\left(\frac{w}{n}\right)}\right. \tag{2}\\
& \theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \tau)=\sum_{m \in Z} \exp \{\mathrm{i} \pi(m+a)[(m+a) \tau+2(z+b)]\} \\
& \sigma_{\alpha}(z) \equiv 0\left[\begin{array}{c}
\frac{1}{2}+\frac{\alpha_{2}}{n} \\
\frac{1}{2}+\frac{\alpha_{1}}{n}
\end{array}\right](z, \tau)
\end{align*}
$$

then the Z_{n} symmetric Belavin R-matrix is written as

$$
\begin{equation*}
R_{j k}(z)=\sum_{\alpha \in Z_{n}^{2}} W_{a}(z) I_{\alpha}^{(j)}\left(Y_{\alpha}^{-1}\right)^{(k)} \tag{3}
\end{equation*}
$$

They satisfy the YBE

$$
R_{12}\left(z_{1}-z_{2}\right) R_{13}\left(z_{1}\right) R_{23}\left(z_{2}\right)=R_{23}\left(z_{2}\right) R_{13}\left(z_{1}\right) R_{12}\left(z_{1}-z_{2}\right)
$$

The operator representation of YBE is the $n \otimes \geqslant n$ matrix $L_{j}(z)$ satisfying the following equation:

$$
\begin{equation*}
R_{12}\left(z_{1}-z_{2}\right) L_{1}\left(z_{1}\right) L_{2}\left(z_{2}\right)=L_{2}\left(z_{2}\right) L_{1}\left(z_{1}\right) R_{12}\left(z_{1}-z_{2}\right) \tag{4}
\end{equation*}
$$

where $L_{1}\left(z_{1}\right)=L\left(z_{1}\right) \otimes I, L_{2}\left(z_{1}\right)=I \otimes L\left(z_{2}\right)$.

If the $L_{j}(z)$ could be expressed as

$$
\begin{equation*}
L_{,}(z)=\sum_{\alpha \in Z_{n}^{2}} W_{\alpha}(z+c) I_{\alpha}^{(j)} S_{\alpha} \tag{5}
\end{equation*}
$$

then the operator S_{α} satisfies Z_{n} SA

$$
\begin{equation*}
\sum_{\gamma} C_{\alpha \beta \gamma}(w, \tau) S_{\alpha-\gamma} S_{\gamma}=0 \tag{6}
\end{equation*}
$$

where $\alpha, \beta, \gamma \in Z_{n}^{2}$, structure constant $C_{\alpha \beta \gamma}$, operator S_{α} is independent of the spectrum parameter z. On the other hand, we can find a solution $L_{j}(z)$ of (4), if we have a representation of S_{α} satisfying (6),
1.1.2. Cyclic representation state and the Boltzmann weight of the IRF model. According to Jimbo et al [6], we have

$$
W=\bigotimes_{j=0}^{n-1} V_{j} \quad V_{j} \cong C^{N} .
$$

We choose a set of canonical bases such that

$$
Z u_{j}=u_{j-1} \quad X u_{j}=q^{j} u_{j} \quad q=\exp \left(\frac{2 \pi \mathrm{i}}{N}\right)
$$

then we have the cyclic representation space W^{0}

$$
W^{0}=\left\{w \in W \mid Z_{0} \ldots Z_{n-1} w=w\right\} .
$$

This could be constructed from the base vector

$$
\begin{equation*}
w_{m}=\sum_{k=0}^{N-1} u_{m_{0}+k} \otimes \ldots \otimes u_{m_{n-1}+k} \quad m=\left(m_{0} \ldots m_{n-1}\right) \in Z_{N}^{n} \tag{7a}
\end{equation*}
$$

obviously

$$
w_{\left(m_{0}, \ldots, m_{n-1}\right)}=w_{\left(m_{0}+k, \ldots, m_{n-1}+k\right)}
$$

hence w_{m} can be uniquely described by the element in $\{Q\}$

$$
\begin{equation*}
Q=Z_{N}^{n} \bmod Z_{N}(1, \ldots, 1) \tag{7b}
\end{equation*}
$$

We can choose from the equivalent $m \in Z_{N}^{n}$ one with $m_{0}=0$

$$
\left\{0, m_{1}^{\prime}, m_{2}^{\prime} \ldots m_{n-1}^{\prime}\right\}
$$

where $m_{j}^{\prime}=m_{j}-m_{0} \bmod N$.
Define

$$
\begin{equation*}
[m]=\left(0, \ldots, m_{n-1}^{\prime}\right) \tag{8}
\end{equation*}
$$

then a base vector is determined by the $n-1$ numbers $m_{j}^{\prime} \in Z_{N}$. We may obtain [a] from a given vector $a \in\left\{w_{m}\right\}$; the opposite is also true, so that W^{0} is N^{n-1} dimensional.

Given any two states $a, b \in\left\{w_{m}\right\}$, they are called admissible if they satisfy

$$
\begin{equation*}
[a]-[b]=\left[e_{j}\right] \bmod Z_{N}^{n} \quad \text { with } 0 \leqslant j \leqslant n-1 \tag{9}
\end{equation*}
$$

where $e_{j}=(0, \ldots, 1,0 \ldots), 1$ is at the j th place.

We write $b=a-e_{j}$, for a given state a there are n states b satisfying this relation. Define

$$
\begin{align*}
& W_{z}\left[\begin{array}{cc}
m & n-e_{j} \\
m-e_{j} & m-2 e_{j}
\end{array}\right]=\frac{\sigma_{0}\left(z+\frac{N^{\prime}}{N}\right)}{\sigma_{0}\left(\frac{N^{\prime}}{N}\right)} \\
& W_{z}\left[\begin{array}{cc}
m & m-e_{j} \\
m-e_{j} & m-e_{j}-e_{k}
\end{array}\right]=\frac{\sigma_{0}\left(z+m_{j k} \frac{N}{N}\right)}{\sigma_{0}\left(m_{j k} \frac{N^{\prime}}{N}\right)} \tag{10}\\
& W_{z}\left[\begin{array}{cc}
m & m-e_{j} \\
m-e_{k} & m-e_{j}-e_{k}
\end{array}\right]=\frac{\sigma_{0}(z) \sigma_{0}\left(m_{j k} \frac{N^{\prime}}{N}-\frac{N^{\prime}}{N}\right)}{\sigma_{0}\left(\frac{N^{\prime}}{N}\right) \sigma_{0}\left(m_{j k} \frac{N^{\prime}}{N}\right)}
\end{align*}
$$

where $m, e_{j}, e_{k} \in Z_{N}^{n}, N, N^{\prime}$ coprime to each other

$$
\begin{array}{lc}
m_{j k}=\bar{m}_{j}-\bar{m}_{k} & \bar{m}_{j}=m_{j}-\frac{1}{n} \sum_{j=0}^{n-1} m_{j}+w_{j} \tag{11}\\
w_{j} \neq w_{k} \bmod N \wedge & \text { if } j \neq k .
\end{array}
$$

We may also define Boltzmann weight

$$
W^{\text {cyc }}\left[\begin{array}{ll}
a & b \\
d & c
\end{array}\right]
$$

for a state configuration

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

round a face by $\left(a, b, c, d \in\left\{w_{m}\right\}\right)$
$W_{z}^{\text {cyc }}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left\{\begin{array}{cc}W_{z}\left[\begin{array}{cc}{[a]} & {[b]} \\ {[c]} & {[d]}\end{array}\right] & \text { if }(a, b),(b, c),(a, d) \text { and }(d, c) \text { are admissible } \\ 0 & \text { otherwise. }\end{array}\right.$
It can be shown that the non-vanishing $W_{z}^{\text {cyc }}$ is one of these in (10), furthermore it is single-valued with respect to Z_{N}^{n} (the right-hand side of (10) is invariant under $m_{j} \rightarrow m_{j}+N$.
1.1.3. The intertwiner of face-vertex models and factorized $L(z)$. Jimbo et al [21, 20] introduced the following intertwiner

$$
\begin{align*}
\varphi_{m l}(z) & ={ }^{t}\left(\varphi_{m i}^{(0)}(z), \ldots, \varphi_{m l}^{(n-1)}(z)\right) \\
\varphi_{m l}^{(k)}(z) & = \begin{cases}\theta^{(k)}\left(z+n w \bar{m}_{j}\right) & \text { if }[m]-[l]=e_{j} \\
0 & \text { otherwise }\end{cases} \tag{13a}\\
\theta^{(j)}(u) & \equiv \theta\left[\begin{array}{cc}
\frac{1}{2}-\frac{j}{n} \\
\frac{1}{2}
\end{array}\right](u, n \tau) .
\end{align*}
$$

This is a single-valued (with respect to m, l) n-dimensional vector. For a given state m, there are n states such that φ is non-vanishing. If different sets of numbers $\left(m_{0}, \ldots\right) \in$ $Z_{N}^{n},\left(m_{0}^{\prime} . \ldots\right) \in Z_{N}^{n}$ represent the same state, then (13) gives an identical vector $\varphi_{m}(z)$.

Jimbo et al [21] showed that, if $w=N^{\prime} / N$, the following is true:

$$
R\left(z^{1}-z_{2}\right) \varphi_{a b}\left(z_{1}\right) \otimes \varphi_{b c}\left(z_{2}\right)=\sum_{d} W_{z_{1}-z_{2}}^{\mathrm{cyc}}\left[\begin{array}{ll}
a & b \tag{13b}\\
d & c
\end{array}\right] \varphi_{d c}\left(z_{1}\right) \otimes \varphi_{a b}\left(z_{2}\right)
$$

According to Bazhanov et al [17], if we could find a row vector

$$
\bar{\varphi}_{a b}\left(z_{1}\right)(z)=\left(\bar{\varphi}_{a b}^{(0)}\left(z_{1}\right), \ldots, \bar{\varphi}_{a b}^{(n-1)}\left(z_{1}\right)\right.
$$

such that

$$
\sum_{k} \bar{\varphi}_{a b}^{(k)} \varphi_{a c}^{(k)}=\left\{\begin{array}{ll}
\delta_{b c} & (a, b),(a, c) \tag{14a}\\
0 & \text { otherwise }
\end{array} \quad\right. \text { admissible }
$$

Consequently we have $n b, c^{s}$, furthermore, we have

$$
\begin{align*}
& \sum_{b} \varphi_{a b}^{(j)} \bar{\varphi}_{a b}^{(k)}=\delta_{j k} \tag{14b}\\
& \bar{\varphi}_{d c}\left(z_{1}\right) \otimes \varphi_{a d}\left(z_{2}\right) R\left(z_{1}-z_{2}\right)=\sum_{b} W_{z_{1}-z_{2}}^{c \mathrm{cc}}\left[\begin{array}{ll}
a & b \\
d & c
\end{array}\right] \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \bar{\varphi}_{b c}\left(z_{2}\right) . \tag{15}
\end{align*}
$$

Proof. From (13)

$$
R\left(z_{1}-z_{2}\right) \varphi_{a b}\left(z_{1}\right) \otimes \varphi_{b c}\left(z_{2}\right)=\sum_{d} W_{z_{1}-z_{2}}\left[\begin{array}{ll}
a & b \\
d & c
\end{array}\right] \varphi_{d c}\left(z_{1}\right) \otimes \varphi_{a b}\left(z_{2}\right)
$$

Multiplying both sides from the right by $\bar{\varphi}_{a b}\left(z_{1}\right) \otimes \bar{\varphi}_{b c}\left(z_{2}\right)$ and summing over b, c we have

$$
\begin{aligned}
\sum_{b} \sum_{c} R\left(z_{1}-\right. & \left.z_{2}\right) \varphi_{a b}\left(z_{1}\right) \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \varphi_{b c}\left(z_{2}\right) \bar{\varphi}_{b c}\left(z_{2}\right) \\
& =\sum_{b} R\left(z_{1}-z_{2}\right) \varphi_{a b}\left(z_{1}\right) \bar{\varphi}_{a b}\left(z_{1}\right) \otimes I \\
& =R\left(z_{1}-z_{2}\right) I \otimes I \\
& =\sum_{b c} \sum_{d} W_{z_{1}-z_{2}}\left[\begin{array}{ll}
a & b \\
d & c
\end{array}\right] \varphi_{d c}\left(z_{1}\right) \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \varphi_{a d}\left(z_{2}\right) \bar{\varphi}_{b c}\left(z_{2}\right) .
\end{aligned}
$$

Then we multiply both sides from the left by $\bar{\varphi}_{d c}\left(z_{1}\right) \otimes \bar{\varphi}_{a d}\left(z_{2}\right)$ to give $\bar{\varphi}_{d c}\left(z_{1}\right) \otimes \bar{\varphi}_{a d}\left(z_{2}\right) R\left(z_{1}-z_{2}\right)$

$$
\begin{aligned}
& =\sum_{b c} \sum_{d} W_{z_{1}-z_{2}}\left[\begin{array}{ll}
a & b \\
d & c
\end{array}\right] \bar{\varphi}_{d c}\left(z_{1}\right) \varphi_{d c}\left(z_{1}\right) \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \delta_{d d} \bar{\varphi}_{b c}\left(z_{2}\right) \\
& =\sum_{b c} W_{z_{1}-z_{2}}\left[\begin{array}{ll}
a & b \\
d^{\prime} & c
\end{array}\right] \delta_{c^{\prime} c} \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \bar{\varphi}_{b c}\left(z_{2}\right) \\
& =\sum_{b} W_{z_{1}-z_{2}}\left[\begin{array}{ll}
a & b \\
d^{\prime} & c^{\prime}
\end{array}\right] \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \bar{\varphi}_{b c}\left(z_{2}\right) .
\end{aligned}
$$

Thus we have

$$
\bar{\varphi}_{d c}\left(z_{1}\right) \otimes \bar{\varphi}_{a d}\left(z_{2}\right) R\left(z_{1}-z_{2}\right)=\sum_{b} W_{z_{1}-z 2}\left[\begin{array}{ll}
a & b \\
d & c
\end{array}\right] \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \bar{\varphi}_{b c}\left(z_{2}\right) .
$$

Let

$$
\begin{equation*}
[L(z)]_{a b}=\varphi_{a b}(z) \bar{\varphi}_{a b}(z) \tag{16}
\end{equation*}
$$

then $L(z)$ satisfies (5).
Proof. As
$\left[R\left(z_{1}-z_{2}\right) L_{1}(z) L_{1}(z)\right]_{a c}=\sum_{b} R\left(z_{1}-z_{2}\right) \varphi_{a b}\left(z_{1}\right) \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \varphi_{b c}\left(z_{2}\right) \bar{\varphi}_{b c}\left(z_{2}\right)$
from (14), the right-hand side of ($16 a$) is

$$
\begin{aligned}
& \sum_{b} \sum_{d} W_{z_{1}-z_{2}}\left[\begin{array}{ll}
a & b \\
d & c
\end{array}\right] \varphi_{d c}\left(z_{1}\right) \bar{\varphi}_{a b}\left(z_{1}\right) \otimes \varphi_{a d}\left(z_{2}\right) \bar{\varphi}_{b c}\left(z_{2}\right) \\
&=\sum_{d} \varphi_{d c}\left(z_{1}\right) \otimes \varphi_{a d}\left(z_{2}\right) \sum_{b} W_{z_{1}-z_{2}}\left[\begin{array}{ll}
a & b \\
d & c
\end{array}\right] \bar{\varphi}_{a b}\left(z_{1}\right) \bar{\varphi}_{b c}\left(z_{2}\right) .
\end{aligned}
$$

From (15), the left-hand side of (16a) is

$$
\begin{aligned}
& \sum_{d} \varphi_{d c}\left(z_{1}\right) \otimes \varphi_{a d}\left(z_{2}\right) \bar{\varphi}_{d c}\left(z_{1}\right) \otimes \bar{\varphi}_{a d}\left(z_{2}\right) R\left(z_{1}-z_{2}\right) \\
&=\sum_{d} \varphi_{d c}\left(z_{1}\right) \bar{\varphi}_{d c}\left(z_{1}\right) \otimes \varphi_{d d}\left(z_{2}\right) \bar{\varphi}_{\alpha d}\left(z_{2}\right) R\left(z_{1}-z_{2}\right) \\
&=\left[L_{2}\left(z_{2}\right) L_{1}\left(z_{1}\right) R\left(z_{1}-z_{2}\right)\right]_{a c} .
\end{aligned}
$$

This is the cyclic $L(z)$ obtained by Quano [20]. It generalizes the results of Hasegawa et al [16].

Remark. We can generalize the $L(z)$ in (16) as follows:
Put $\varphi_{a b}(z+\zeta)$ instead of $\varphi_{a b}(z)$ in (16), then the resulting

$$
\begin{equation*}
[L(z)]_{m l}=\varphi_{m I}(z+\zeta) \bar{\varphi}_{m l}(z) \tag{16b}
\end{equation*}
$$

also satisfies YBE (5).

The $\bar{\varphi}_{a, a-e_{1}}^{(i)}(z)$ which satisfies (14a) is the matrix element of the inverse of $N \otimes n$ matrix A, where $A_{i j}=\varphi_{a, a-e_{i}}^{(i)}$, i.e.

$$
A=\left[\begin{array}{ccc}
\theta^{(0)}\left(n z_{0}\right) & \ldots & \theta^{(0)}\left(n z_{n-1}\right) \tag{17}\\
\vdots & \ldots & \vdots \\
\theta^{(n-1)}\left(n z_{0}\right) & \ldots & \theta^{(n-1)}\left(n z_{n-1}\right)
\end{array}\right]
$$

where $n z_{j}=z+n w \bar{m}_{j}$. Thus

$$
\begin{equation*}
\bar{\varphi}_{a, a-e_{l}}^{(i)}(z)=B_{i j}(z) / \operatorname{Det} A \tag{18}
\end{equation*}
$$

where $B_{i j}$ is the cofactor matrix of $A_{i j}$. It can be shown [20] that

$$
\begin{equation*}
\operatorname{Det} A=C \sigma_{0}\left(\sum_{j=0}^{n-1} z_{j}-p_{n}\right) \prod_{l<k} \sigma_{0}\left(z_{i}-z_{k}\right) \tag{19}
\end{equation*}
$$

where C is a z_{i}-independent constant and $p_{n}=(n-1) / 2$.

2. Cyclic and function difference representations of $S A$

2.1. Cyclic representation of $S A$

We now look for the S_{α} in (6) which corresponds to $L(z)$ in (16). As I_{α} is invertible, and

$$
\begin{equation*}
\operatorname{tr} I_{\alpha}\left(X_{\beta}\right)^{-1}=n \delta_{\alpha_{1} \beta_{1}} \delta_{\alpha_{2} \beta_{2}} \tag{20}
\end{equation*}
$$

it is easy to show that $\left\{I_{\alpha}\right\}$ forms a complete set of bases. Let

$$
L(z)=\sum_{\alpha} I_{\alpha} U_{\alpha}(z) \quad U_{\alpha}: \text { operator }
$$

then

$$
U_{\alpha}(z)=\frac{1}{n} \operatorname{tr} L(z)\left(Y_{\alpha}\right)^{-1}
$$

If $U_{a}(z)=W_{\alpha}(z+\mu, w, \tau) S_{\alpha}$, where W_{α} is given by (2), then S_{α} is a representation of SA and satisfies (7). From (16)

$$
\begin{align*}
L_{m l}(z) & =\varphi_{m l} \bar{\varphi}_{m l}(z+\zeta) \tag{21}\\
n\left[U^{\alpha}\right]_{m l} & =\operatorname{tr}\left[L_{m l}(z)\left(I_{\alpha}\right)^{-1}\right] \\
& =\sum_{i k}\left[\varphi_{m l}^{(i)}(z)\right]\left[\bar{\varphi}_{m l}^{(k)}\right]\left(I_{\alpha}\right)_{k l}^{-1} \\
& =\sum_{i k} \bar{\varphi}_{m l}^{(k)}(z)\left(I_{\alpha}\right)_{k i}^{-1} \varphi_{m l}^{(i)}(z+\zeta) \\
& =\bar{\varphi}_{m l}(z)\left(I_{\alpha}\right)^{-1} \varphi_{m l}(z+\zeta) \\
& = \begin{cases}\bar{\varphi}_{m, m-e_{j}}(z) \psi_{m, m-e_{j}}(z+\zeta) & \text { if }[m]-[l]=e_{j} \\
0 & \text { if }(m, l) \text { not admissible }\end{cases}
\end{align*}
$$

where $\psi_{m, m-c_{\rho}}(z)=\left(I_{\alpha}\right)^{-1} \varphi_{m, m-e_{\rho}}(z)$.

Consequently

$$
\left.\begin{array}{rl}
n\left[U_{a}\right]_{m l} & =\left\{\begin{array}{l}
\sum_{i} \frac{B_{i j}(z)}{\operatorname{Det} A(z)} \times \psi_{m, m-e_{j}}^{(n)} \\
0 \\
0 \\
(m, l) \text { not admissible }
\end{array}\right. \\
\operatorname{Det}[m]-[l]=e_{j}
\end{array}\right]\left[\begin{array}{ccccc}
\theta^{0}\left(n z_{0}\right) & \ldots & \psi^{0}\left(n z_{j}\right) & \ldots & \theta^{0}\left(n z_{n-1}\right) \tag{22}\\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\theta^{n-1}\left(n z_{0}\right) & \ldots & \psi^{0}\left(n z_{j}\right) & \ldots & \theta^{n-1}\left(n z_{n-1}\right)
\end{array}\right], ~\left[\begin{array}{ccccc}
\theta^{0}\left(n z_{0}\right) & \ldots & \theta^{0}\left(n z_{j}\right) & \ldots & \theta^{0}\left(n z_{n-1}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\theta^{n-1}\left(n z_{0}\right) & \ldots & \theta^{0}\left(n z_{j}\right) & \ldots & \theta^{n-1}\left(n z_{n-1}\right)
\end{array}\right] .
$$

From (13), it can be shown that

$$
\begin{align*}
& g^{-1} \varphi_{m, m-e_{j}}(z)=(-1) \varphi_{m, m-e_{j}}(z+1) \\
& \left.\begin{array}{rl}
h^{-1} \varphi_{m, m-e_{j}}(z) & =\exp \left[\frac{2 \pi \mathrm{i}}{n}\left(z+n \bar{m}_{j} w+\frac{1}{2}+\frac{\tau}{2}\right)\right] \varphi_{m, m-e_{j}}(z+\tau) \\
\psi(z)=\left(I_{\alpha}\right)^{-1} \varphi_{m, m-e_{j}}(z)=h^{-\alpha_{2}} g^{-\alpha_{1}} \varphi_{m, m-e_{j}}(z+\tau) \\
= & \exp \left[\frac{2 \pi \mathrm{i}}{n}\left(\alpha_{2} z+n \frac{\alpha_{1}}{2}+\alpha_{1} \alpha_{2}+\frac{\alpha_{2}^{2} \tau}{2}+n \alpha_{2} \bar{m}_{j} w+\frac{1}{2}\right)\right] \\
& \times \varphi_{m, m-e_{j}\left(z+\alpha_{1}+\alpha_{2} \tau\right)} \\
n\left[U^{\alpha}\right]_{m l}=\bar{\varphi}_{m m-e_{j}}(z)\left(I_{\alpha}\right)^{-1} \varphi_{m m-e}(z) \\
= & \operatorname{Det}\left[\begin{array}{ccccc}
\theta^{0}\left(n z_{0}\right) & \ldots & \theta^{0}\left(n z_{j}^{\prime}\right) & \ldots & \theta^{0}\left(n z_{n-1}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\theta^{n-1}\left(n z_{0}\right) & \ldots & \theta^{n-1}\left(n z_{j}^{\prime}\right) & \ldots & \theta^{n-1}\left(n z_{n-1}\right)
\end{array}\right] \\
& \times \operatorname{Det}\left[\begin{array}{cccc}
\theta^{0}\left(n z_{0}\right) & \ldots & \theta^{0}\left(n z_{j}\right) & \ldots \\
\vdots & \vdots & \vdots & \theta^{0}\left(n z_{n-1}\right) \\
\theta^{n-1}\left(n z_{0}\right) & \ldots & \theta^{n-1}\left(n z_{j}\right) & \ldots
\end{array}\right] \quad \theta^{n-1}\left(n z_{n-1}\right)
\end{array}\right] \times \text { Factor }
\end{align*}
$$

where

$$
\begin{equation*}
z_{i}=\frac{1}{n}\left(z+n m_{i} w\right) \quad z_{j}^{\prime}=\frac{1}{n}\left(\alpha_{1}+\alpha_{2} \tau+\zeta\right)+z_{j} \quad i, j=0, \ldots, n-1 \tag{25}
\end{equation*}
$$

$$
\text { Factor }=\exp \left\{\frac{2 \pi \mathrm{i}}{n}\left[\alpha_{2}(z+\zeta)+n \frac{\alpha_{i}}{2}+\alpha_{1} \alpha_{2}+\frac{\alpha_{2}^{2} \tau}{2}+n \alpha_{2} \bar{m}_{j} w+\frac{\alpha_{2}}{2}\right]\right\}
$$

Let

$$
\operatorname{Det}\left[\begin{array}{ccc}
\theta^{0}\left(n z_{0}\right) & \cdots & \cdots \tag{26}\\
\vdots & \vdots & \vdots \\
\cdots & \ldots & \theta^{n-1}\left(n z_{n-1}\right)
\end{array}\right]=f\left(z_{0}\right)
$$

As

$$
\begin{align*}
& \theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z+\tau, \tau)=\exp (-\pi \mathrm{i} \tau-2 \pi \mathrm{i}(z+b)) \theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \tau) \tag{27}\\
& \theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z+1, \tau)=\exp (2 \pi \mathrm{i} a) \theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \tau) \\
& f\left(z_{0}+\tau\right)=\exp \left(-\pi \mathrm{i} \tau-2 \pi \mathrm{i}\left(n z_{0}+\frac{1}{2}\right)\right) f\left(z_{0}\right) \tag{28}\\
& f\left(z_{0}+1\right)=\exp (n \pi \mathrm{i} a) f\left(z_{0}\right)
\end{align*}
$$

Thus $f\left(z_{0}\right)$ has n zeros in \wedge_{τ}, and the sum of the zeros is

$$
\sum_{\lambda_{\mathrm{t}}} \text { zeros }=\frac{n-1}{2}
$$

As a function of $z_{0}, f\left(z_{0}\right)$ has $n-1$ obvious zeros, $z_{0}=z_{1}, z_{2}, \ldots, z_{n-1}$, so the last zero is at $z_{0}=-z_{1}-z_{2}-\ldots-z_{n-1}$. It is easy to check that the function

$$
g\left(z_{0}\right)=\sigma_{0}\left(z_{0}+z_{1}+\ldots+z_{n-1}-\frac{n-1}{2}\right) \prod_{k \neq 0} \sigma_{0}\left(z_{0}-z_{k}\right)
$$

has the same zeros as $f\left(z_{0}\right)$. As the function $f\left(z_{0}\right) / g\left(z_{0}\right)$ is a double periodic pure function, it can only be a z_{0}-independent constant, i.e.

$$
\frac{f\left(z_{0}\right)}{g\left(z_{0}\right)}=C .
$$

The same analysis is also true for $z_{i}, i=1, \ldots, n-1$, so we finally have

$$
\begin{equation*}
f\left(z_{0}\right)=\sigma_{0}\left(\sum_{i=0}^{n-1} z_{i}-\frac{n-1}{2}\right) \prod_{i<k} \sigma_{0}\left(z_{i}-z_{k}\right) . \tag{29}
\end{equation*}
$$

Applying this to (24) we have

$$
n\left[U_{\alpha}\right]_{m, m-e_{j}}=\frac{\sigma_{0}\left(\sum_{i \neq j} z_{i}+z_{j}^{\prime}-\frac{n-1}{2}\right) \prod_{k \neq j} \sigma_{0}\left(z_{j}^{\prime}-z_{k}\right)}{\sigma_{0}\left(\sum_{i=0}^{n-1} z_{i}-\frac{n-1}{2}\right) \prod_{k \neq j} \sigma_{0}\left(z_{j}-z_{k}\right)} \times \text { Factor }
$$

where z_{i}, z_{j}^{\prime} are given by (25).

$$
\begin{aligned}
n\left[U_{\alpha}\right]_{m, m-c_{j}}= & \frac{\sigma_{0}\left(z+w \delta+\frac{\alpha_{1}+\alpha_{2} \tau+\zeta}{n}-\frac{n-1}{2}\right)}{\sigma_{0}\left(z+\delta-\frac{n-1}{2}\right)} \\
& \times \prod_{k \neq j} \frac{\sigma_{0}\left[\frac{\alpha_{1}+\alpha_{2} \tau+\zeta}{n}+\left(\bar{m}_{j}-\bar{m}_{k}\right) w\right]}{\sigma_{0}\left[\left(\bar{m}_{j}-\tilde{m}_{k}\right) w\right]} \times \text { Factor. } \\
& \delta=\sum_{j} \bar{m}_{j}=\sum_{j} w_{j} .
\end{aligned}
$$

As

$$
\sigma_{0}\left(z+\frac{\alpha_{1}+\alpha_{2} \tau}{n}\right)=\exp \left[\frac{-\pi \mathrm{i}}{n^{2}}\left(2 n \alpha_{2} z+2 \alpha_{1} \alpha_{2}+\alpha_{2}^{2} \tau+n \alpha_{2}\right)\right] \times \sigma_{\alpha}(z)
$$

so

$$
\begin{align*}
{\left[U_{a}\right]_{m, m-c j}=} & \frac{\sigma_{\alpha}\left(z+\frac{\zeta}{n}+w \delta-\frac{n-1}{2}\right)}{n \sigma_{0}\left(z+w \delta-\frac{n-1}{2}\right)} \prod_{k \neq j} \frac{\sigma_{\alpha}\left[\frac{\zeta}{n}+\left(\bar{m}_{j}-\bar{m}_{k}\right) w\right]}{\sigma_{0}\left[\left(\bar{m}_{j}-\bar{m}_{k}\right) w\right]} \\
& \times \exp \left(-\frac{2 \pi \mathrm{i}}{n}\left[\alpha_{2}\left(z+\frac{\alpha_{2} \tau+2 \alpha_{1}+n}{2}+\xi+w \delta-\frac{n-1}{2}+n \bar{m}_{j} w-\sum \bar{m}_{k} w\right)\right]\right) \\
& \times \exp \left(\frac{2 \pi \mathrm{i}}{n}\left[\alpha_{2}(z+\xi)+\alpha_{2}^{2} \tau+\alpha_{1} \alpha_{2}+\frac{n \alpha_{1}}{2}+n \alpha_{2} \bar{m}_{j} w+\frac{\alpha_{2}}{2}\right]\right) \\
= & \mathrm{e}^{\pi \mathrm{i} \alpha_{1}} \frac{\sigma_{\alpha}\left(z+\frac{\zeta}{n}+w \delta-\frac{n-1}{2}\right)}{n \sigma_{0}\left(z+w \delta-\frac{n-1}{2}\right)} \prod_{k \neq 1} \frac{\sigma_{\alpha}\left[\frac{\zeta}{n}+\left(m_{j}+w_{j}-m_{k} w_{k}\right) w\right]}{\sigma_{0}\left[\left(m_{j}+w_{j}-m_{k}-w_{k}\right) w\right]} . \tag{30}
\end{align*}
$$

Comparing this with (2) and (5) we can see that, aside from some insignificant terms such as $\left[n \sigma_{0}(z+w \delta-(n-1) / 2)\right]^{-1}, L(z)$ in (16b) has the desired form of (6); we can consequently write the matrix element of the cyclic representation of the SA

$$
\begin{align*}
& \left(S_{\alpha}\right)_{m, m-e_{j}}-(-1)^{\alpha_{\mathrm{t}}} \sigma_{\alpha}\left(\frac{w}{n}\right) \prod_{k \neq j} \frac{\sigma_{\alpha}\left[\frac{\zeta}{n}+\left(m_{j}+w_{j}-m_{k}-w_{k}\right) w\right]}{\sigma_{0}\left[\left(m_{j}+w_{j}-m_{k}-w_{k}\right) w\right]} \tag{31}\\
& L(z)=\frac{\sum_{\alpha} W_{\alpha}\left(z-\frac{w}{n}+\frac{\zeta}{n}+w \delta-\frac{n-1}{2}\right) I_{\alpha} S_{\alpha}}{n \sigma_{0}\left(z+w \delta-\frac{n-1}{2}\right)} . \tag{32}
\end{align*}
$$

Equation (32) is invariant under $\alpha_{i} \rightarrow \alpha_{i}+n$ because

$$
\begin{aligned}
& \sigma_{\alpha+(n q, n p)}(z, \tau)=(-1)^{q} \exp \left(2 \pi i q \alpha_{2} / n\right) \sigma_{\alpha}(z, \tau) \quad p, q \in Z \\
& S_{\alpha \rightarrow S_{\alpha}} \quad \text { as } \alpha_{2 \rightarrow \alpha_{2}}+n \\
& S_{\alpha} \rightarrow(-1)^{n} \times \exp \left(2 \pi \mathrm{i}\left(\frac{1}{2}+\frac{\alpha_{2}}{n}\right) \times n\right)=S_{\alpha} \quad \text { as } \alpha_{1} \rightarrow \alpha_{1} \rightarrow n
\end{aligned}
$$

Remark. $S_{\alpha}, L(z)$ are operators acting on $W^{(0)}$ (see (7)), and their matrix elements are well defined on the standard bases w_{m} given in (7a) (i.e. they are invariant under $\left.m_{i} \rightarrow m_{i}+N, m \succ(1,1, \ldots, 1)+m\right)$.

2.2. Cocycle coefficient of the cyclic representation

We can expand the SA in the following way:
As Sklyanin algebra (6) is defined by second-order homogeneous equations with respect to S_{α}, and the sum of the lower indices of two S s are the same $(\bmod n \times n)$. There are only n states $\left|m-e_{i}\right\rangle, i=0,1, \ldots, n-1$, from which we can get to $|m\rangle$ by acting S_{α} on them, and there are n^{2} states $\left|m-e_{i}-e[k]\right\rangle, i, k=0,1, \ldots, n-1$, from which we can get to $|m\rangle$ by acting $S_{a} S_{\beta}$ on them. The possible routes from $|m\rangle$ to $\left|m-e_{i}-e_{k}\right\rangle$ are
(a) $i=k$

$$
\left|m-e_{i}-e_{i}\right\rangle \rightarrow\left|m-e_{i}\right\rangle \rightarrow|m\rangle
$$

(b) $i \neq k$
(i) $\left|m_{i}-e_{k}\right\rangle \rightarrow\left|m-e_{i}\right\rangle \rightarrow|m\rangle$
(ii) $\left|m-e_{t}-e_{k}\right\rangle \rightarrow\left|m-e_{k}\right\rangle \rightarrow|m\rangle$.

We propose to expand S_{α} as

$$
\begin{equation*}
\left(S_{\alpha}\right)_{m, m-e_{j} \rightarrow \mathrm{e}^{A(m, j, \alpha)}}\left(S_{\alpha}\right)_{m, m-e_{j}} \tag{33}
\end{equation*}
$$

If

$$
\begin{equation*}
A(m, i, \alpha-\gamma)+A\left(m-e_{i}, k, \gamma\right)=B(m, i, k, \alpha) \tag{34}
\end{equation*}
$$

is independent of $\gamma, m-e_{i}$, then (6) is still true, we require $\mathrm{e}^{A(m, j, \alpha)}$ to be well defined with respect to $m, \alpha \in Z_{n}^{2}$, the simplest non-trivial choice is

$$
A(m, j, \alpha)=\delta_{j}+\frac{2 \pi \mathrm{i}}{n}\left(l_{1} \alpha_{1}+l_{2} \alpha_{2}\right)
$$

where $\delta_{j} \in C, l_{1}, l_{2} \in Z$.
The second term in our choice of $A(m, j, \alpha)$ is actually the part isomorphic to Sklyanin algebra. Finally we have

$$
\begin{equation*}
\left(S_{\alpha}\right)_{m, m-e_{j}}=\frac{\exp \left(\delta_{j}+2 \pi \mathrm{i}\left(\frac{\alpha_{1}}{2}+l_{1} \frac{\alpha_{1}}{n}+l_{2} \frac{\alpha_{2}}{n}\right)\right)}{\sigma_{a}\left(\frac{w}{n}\right)} \prod_{k \neq j} \frac{\sigma_{\alpha}\left[\frac{\zeta}{n}+\left(m_{j}+w_{j}-m_{k}-w_{k}\right) w\right]}{\sigma_{0}\left[\left(m_{j}+w_{j}-m_{k}-w_{k}\right) w\right]} \tag{35}
\end{equation*}
$$

in which we have the parameters $\delta_{j}, \zeta, w_{j}-w_{k}$. As, when $\delta_{j} \rightarrow \delta_{j}+v, S_{\alpha}^{\prime}$ is essentially unchanged, we choose $\sum \delta_{j}=0$, so we have $2 n-1$ independent parameters in the representation.

It is remarkable that we cannot get rid of the coefficient

$$
\exp \left(\delta_{3}+2 \pi \mathrm{i}\left(\frac{\alpha_{1}}{2}+l_{1} \frac{\alpha_{1}}{n}+l_{2} \frac{\alpha_{2}}{n}\right)\right)
$$

through a similar transformation, because as we take the sequence $\left|m-N e_{i}\right\rangle \rightarrow \ldots \rightarrow|m\rangle$, the product of these coefficients does not give one. As the initial and the final states in the sequence are identical, similar transformation should give a trivial coefficient.

$$
\exp \left(\delta_{j}+2 \pi \mathrm{i}\left(\frac{\alpha_{1}}{2}+l_{1} \frac{\alpha_{1}}{{ }^{n}}+l_{2} \frac{\alpha_{2}}{n}\right)\right)
$$

is actually a cocycle coefficient on n-torus.

2.3. Function difference representation of S_{A}

So far in our treatment we have restricted ourselves to the case where $w=N^{\prime} / N$ is rational, and we find that the representation is well defined on $\{Q\}$. We can ease our restrictions such that we associate each bases vector with (m), $m=\left\{m_{0}, \ldots, m_{n-1}\right\} \in Z^{n}$. The admissible condition is still $(m)-(1)=\left(e_{j}\right)$, i.e. $m_{i}-l_{i}=\delta_{i j}$. And we take (35) as $\left(\bar{S}_{\alpha}\right)_{(m)(m-a)}$. Obviously we have

$$
\begin{equation*}
\sum_{\gamma m^{\prime}} C_{\alpha \beta \gamma}\left(\bar{S}_{\alpha-\gamma}\right)_{(m)\left(m^{\prime}\right)}\left(\bar{S}_{\gamma}\right)_{\left(m^{\prime}\right)\left(m^{\prime \prime}\right)}=0 \tag{36}
\end{equation*}
$$

According to Jimbo et al [8], equation (36) holds irrespective of whether w is a rational number or not.

Let $\left(m_{i}-w_{i}\right) w \equiv u_{i}$, then (35) becomes
$\left(S_{\alpha}\right)_{m, m-\ell_{j}}(w) \equiv\left(S_{\alpha}\right)_{j}(u, w)$

$$
\begin{equation*}
=\exp \left(\delta_{j}+2 \pi \mathrm{i}\left(\frac{\alpha_{1}}{2}+l_{\mathrm{I}} \frac{\alpha_{1}}{n}+l_{2} \frac{\alpha_{2}}{n}\right)\right) \times \sigma_{\alpha}\left(\frac{w}{n}\right) \times \prod_{k \neq j} \frac{\sigma_{\alpha}\left[\frac{\zeta}{n}+\left(u_{j}-u_{k}\right) w\right]}{\sigma_{0}\left[\left(u_{j}-u_{k}\right) w\right]} . \tag{37}
\end{equation*}
$$

Then (6) becomes

$$
\begin{align*}
& \text { (a) } m^{\prime \prime}=m-2 e_{i} \quad \sum_{\gamma} C_{\alpha \beta \gamma}\left(S_{\alpha-\gamma}\right)_{i}(u)\left(S_{\gamma}\right)_{i}\left(u_{0}, \ldots, u_{i}-w, \ldots\right)=0 \\
& \text { (b) } m^{\prime \prime}=m-e_{j}-e_{k} \quad j \neq k ; \\
& \sum_{\gamma} C_{\alpha \beta \gamma}\left\{\left(S_{\alpha-\gamma}\right)_{j}(u)\left(S_{\gamma}\right)_{k}\left(u_{0}, \ldots, u_{j}-w, \ldots\right)\right. \tag{38}\\
& \left.+\left(S_{\alpha-\gamma}\right)_{k}(u)\left(S_{\gamma}\right)_{j}\left(u_{0}, \ldots, u_{k}-w, \ldots\right)\right\}=0 .
\end{align*}
$$

As w_{j} is generic, so is $u \equiv\left\{u_{j}\right\}$, and it is easy to see that (38) is true for generic u.
Next we consider the function difference representation of SA. Define the operator \hat{S}_{α} acting on function $f(u)=f\left(u_{0}, \ldots, u_{n-1}\right)$ as

$$
\hat{S}_{\alpha} f(u)=\sum_{j}\left(S_{\alpha}\right)_{j}(u, w) f\left(u_{0}, \ldots, u_{n-i}\right)
$$

then

$$
\begin{aligned}
& \sum_{\gamma} C_{\alpha \beta \gamma} \hat{S}_{\alpha-\gamma} \widehat{S}_{\gamma} f(u) \\
&= \sum_{\gamma} C_{\alpha \beta \gamma} \hat{S}_{\alpha-\gamma} \sum_{k}\left(S_{\gamma}\right)_{k} f\left(u_{0}, \ldots, u_{k}-w, \ldots\right) \\
&= \sum_{\gamma} C_{\alpha \beta \gamma} \sum_{j}\left(S_{\alpha-\gamma}\right)_{j}(u) \\
& \times\left[\sum_{k \neq j}\left(S_{\gamma}\right)_{k}\left(u_{0}, \ldots, u_{j}-w, \ldots\right)\right. \\
& \times f\left(u_{0}, \ldots, u_{j}-w, \ldots, u_{k}-w, \ldots\right) \\
&\left.+\left(S_{\gamma}\right)_{j}\left(u_{0}, \ldots, u_{j}-w, \ldots\right) f\left(u_{0}, \ldots, u_{j}-2 w, \ldots\right)\right] \\
&= \sum_{\gamma} C_{\alpha \beta \gamma} \sum_{\ll k}\left[\left(S_{\alpha-\gamma}\right)_{j}(u)\left(S_{\gamma}\right)_{k}\left(u_{0}, \ldots, u_{j}-w_{,}, \ldots\right)\right. \\
&\left.+\left(S_{\alpha-\gamma}\right)_{k}(u)\left(S_{\gamma}\right)_{j}\left(u_{0}, \ldots, u_{k}-w, \ldots\right)\right] \\
& \times f\left(u_{0}, \ldots, u_{j}-w, \ldots, u_{k}-w, \ldots\right) \\
&+\sum_{\gamma} C_{\alpha \beta \gamma} \sum_{j}\left(S_{\alpha-\gamma}\right)_{j}(u)\left(S_{\gamma}\right)_{j}\left(u_{0}, \ldots, u_{j}-w, \ldots\right) \\
& \times f\left(u_{0}, \ldots, u_{j}-2 w, \ldots\right)
\end{aligned}
$$

So (39) guarantees the identity

$$
\sum_{\gamma} C_{\alpha \beta \gamma} \hat{S}_{\alpha-\gamma} \hat{S}_{\gamma} f(u)=0
$$

This is the function difference representation of SA.
We now compare our results with those given by Sklyanin at $n=2$. At $n=2$, we consider the function as $f\left(u_{0}, u_{1}\right)=f(2 u)$, where $u_{0}-u_{1}=2 u, u_{0}+u_{1}=2 v$. Let $\delta_{0}=\delta_{1}=$ $\pi \mathrm{i}, l_{0}=0, l_{2}=1$ in (37). We then have

$$
\begin{gathered}
\left(S_{\alpha}\right)_{0}(u)=\sigma_{\alpha}\left(\frac{w}{2}\right) \frac{\sigma_{\alpha}\left(\frac{\zeta}{n}+2 u\right)}{\sigma_{0}(2 u)}-(-1)^{\alpha_{1}+\alpha_{2}-1} \\
\left(S_{\alpha}\right)_{1}(u)=\sigma_{a}\left(\frac{w}{2}\right) \frac{\sigma_{\alpha}\left(\frac{\zeta}{n}-2 u\right)}{\sigma_{0}(-2 u)}(-1)^{\alpha_{1}+\alpha_{2}-1}
\end{gathered}
$$

So
$S_{\alpha} f(2 u)=\left[\frac{\sigma_{\alpha}\left(\frac{w}{2}\right) \sigma_{\alpha}\left(\frac{\zeta}{n}+2 u\right)}{\sigma_{0}(2 u)} f(2 u-w)-\frac{\sigma_{\alpha}\left(\frac{w}{2}\right) \sigma_{\alpha}\left(\frac{\zeta}{n}-2 u\right)}{\sigma_{0}(2 u)} f(2 u+w)\right] \times(-1)^{\alpha_{1}+\sigma_{2}-1}$
where $f(2 u)=F(u), \zeta / n=l w$.

$$
\begin{gathered}
S_{\alpha} F(u)=\left[\frac{\sigma_{\alpha}\left(\frac{w}{2}\right) \sigma_{\alpha}(l w+2 u)}{\sigma_{0}(2 u)} F\left(u-\frac{w}{2}\right)-\frac{\sigma_{\alpha}\left(\frac{w}{2}\right) \sigma_{\alpha}(l w-2 u)}{\sigma_{0}(2 u)} F\left(u+\frac{w}{2}\right)\right] \times(-1)^{\alpha_{1}+\alpha_{2}-1} \\
\equiv S_{\alpha}\left(u+\frac{l w}{2}\right) F\left(u-\frac{w}{2}\right)-S_{\alpha}\left(-u+\frac{l w}{2}\right) F\left(u+\frac{w}{2}\right)
\end{gathered}
$$

where $f(2 u)=F(u), \zeta / n=l w$.
Let $w / 2=-\eta$, remember that $\sigma_{00}(-\eta)=0_{00}(-\eta)=-\sigma_{00}(\eta), \sigma_{i}(-\eta)=\sigma_{i}(\eta), i=$ $\alpha_{2}, \alpha_{1}=1,0 ; 1,1 ; 01$. We have

$$
S_{\alpha} F(u)=\frac{S_{\alpha}(u-l \eta) F(u+\eta)-S_{\alpha}(-u-l \eta) F(u-n)}{0_{11}(2 u)}
$$

where S_{α} and the corresponding I_{α}, S_{α} are

$$
S_{\alpha}=\left\{\begin{array}{l}
S_{00}=\theta_{11}(\eta) \theta_{11}(2 u) \\
S_{01}=\theta_{10}(\eta) \theta_{10}(2 u) \\
S_{10}=\theta_{01}(\eta) \theta_{01}(2 u) \\
S_{11}=-\theta_{00}(\eta) \theta_{00}(2 u)
\end{array} \quad I_{\alpha}=\left\{\begin{array}{l}
I=I_{00} \\
\sigma_{z}=I_{01} \\
\sigma_{x}=I_{10} \\
i \sigma_{y}=I_{11}
\end{array} \quad S_{\alpha}=\left\{\begin{array}{l}
S_{0} \\
S_{3} \\
S_{1} \\
S_{2}
\end{array}\right.\right.\right.
$$

where $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are the Pauli matrices, and $S_{0}, S_{1}, S_{2}, S_{3}$ are the corresponding Sklyanin operators. From the automorphism of Sklyanin ($S_{0}, S_{1}, S_{2}, S_{3}$) \rightarrow ($S_{0}, S_{3},-S_{2}, S_{1}$), we have

$$
\begin{array}{ll}
S_{0}^{\prime}=\theta_{\mathrm{I1}}(\eta) \theta_{11}(2 u) & S_{1}^{\prime}=\theta_{10}(\eta) \theta_{10}(2 u) \\
S_{2}^{\prime}=\theta_{00}(\eta) \theta_{00}(2 u) & S_{3}^{\prime}=\theta_{01}(\eta) \theta_{01}(2 u)
\end{array}
$$

Comparing $S_{\alpha}^{\prime \prime}$ with $S_{\alpha}^{\prime \prime}$ used by Sklyanin

$$
L(z)=\sum W_{\alpha}(z) \sigma_{\alpha} S_{\alpha}^{\prime \prime}
$$

we see that $i S_{2}^{\prime}=S_{2}^{\prime \prime}, S_{j}^{\prime}=S_{j}^{\prime \prime}, j=0,1,3$.

Acknowledgments

The authors would like to thank M Jimbo, T Miwa for inspiring discussions. We would also like to thank Y Quano for his valuable preprint. This work is supported in part by the Natural Science Fund of China.

References

[1] Sklyanin E K. 1982 Funct. Anal. Appl. 16263
[2] Frenkel I B and Reshetikhin N Yu 1991 Yale Preprint
[3] Baxter R J 1972 Ann. Phys. (USA) 79
[4] Belavin A A 1981 Nucl. Phys. B 180189
[5] Andrews G E, Baxter R J and Forrester P J 1984 J. Stat. Phys. 35193
[6] Jimbo M, Miwa T and Okado M 1988 Commun. Math. Phys. 116507
[7] Kashiwara M and Miwa T 1986 Nucl. Phys. B 275 121
[8] Jimbo M, Miwa T and Okado M 1986 Nucl. Phys. B 275517
[9] Richey M P and Tracy C A 1986 J. Stat. Phys. 42311
Cherednik I V 1983 Sov. J. Nucl. Phys. 36320
[10] Cherednik I V 1985 Funct. Anal. Appl. 1977
[11] Hou B Y and Wei H J. Math. Phys. 302750
[12] Quano Y H and Fuji A 1991 Mod. Phys. Lett. A 63635
[13] Hou B Y, Shi K J and Yang Z X 1991 Infinite Analysis eds Tsuchiya A and Jimbo M (Singapore: World Scientific)
[14] Hou B Y and Zhou Y K 1990 J. Phys. A: Math. Gen. 231147
[15] Cherednik I V 1986 Sov. Math. Dokl. 33507
[16] Hsaegawa K and Yamada Y Phys. Lett. 146A 387
[17] Bazhanov V V and Stroganov Yu G 1990 J. Stat. Phys. 59799
[18] Bernard B and Pasquier V Preprint Spht/89-204
[19] Bazhanov V V, Kashaev R M, Mangazeev V V and Stroganov Yu G 1991 Commun. Math. Phys. 138 391
[20] Quano Y H 1992 Preprint University of Tokyo UT-613
[21] Jimbo M, Miwa T and Okado M 1988 Nucl. Phys. B 30074

- 1981 Lett. Math. Phys. 14123
[22] Smith S P and Staniszkis J M 1991 Preprint University of Washington

