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Absbaft. We obtain the cyclic representation of Z. Sklyanin algebra. From this we derive 
its function difference representation. When n=2, it coincides with the known result. 

1. Introduction 

Recently, there has been considerable attention and intensive study on quantum group 
theory. From the physics point of view, the quantum group can represent both the 
exchange relation symmetry of vertex operators in conformal field theory and the sym- 
metry of the six-vertex model and other exactly solvable statistical models, which have 
triangular functions as their Boltzmann weights. 

It is expected that Sklyanin dgebra [l] plays a similar role in integrablemassive 
field theory [2], which has its exchange relations expressed by elliptic functions, and in 
some exactly solvable statistical models [3-81, which have their Boltzmann weights 
expressed in elliptic functions. They are reduced to the corresponding triangular models 
when the modular parameter approaches infinity. 

Starting from the eight-vertex model [3], Sklyanin [7] derived the sl(rr) Sklyanin 
algebra for n= 2. He subsequently constructed the single variable function represen- 
tation of the algebra, and consequently the classification of the representations. Using 
the limit of these representations, he was the fust to give the highest weight represen- 
tation and the minimal cyclic representation of the quantum group sI4(2). 

Starting from n@n [3,9] model, Cherednik [lo] generalized the Sklyanin algebra 
to the generic sl(n). Wei et ai[ 11, 17.1 worked out the structure constants for the algebra. 
The authors of this paper gave explicitly [ 131 the process by which Sklyanin algebra is 
reduced to U,(sT(n)). Zhou et a1 [14,15] constructed the tensor product representation 
of the Sklyanin algebra through fusion. However, the explicit expressions of the cyclic 
representation have yet to be found. 

Hasegawa and Yamada [I61 managed to construct the Yang-Baxter operator L(u) 
for the eight-vertex model by using the cyclic representation [I] of Sklyanin algebra. It 
was found that the operator L(u) could be factorized, which is sjmilar to the triangular 
case in [18,19]. They further derived the broken Z, model [7,8]. Bazhanov et ai [19] 
point out that the factorizability of L(u) means that we could constmct the IRF model 
from the corresponding vertex model. Recently, making use of this approach,. Quano 
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[20] worked out the cyclic representation of the L(u) operator for the Sklyanin algebra. 
(He also gave a new type of A:’) Kashiwara-Miwa model [6,7].) 

In this paper, we give an explicit cyclic representation of the Sklyanin operator Sa, 
and we find that it has Zn- 1 parameters, which is the same number BS for the minimal 
cycfic representation of quantum group U,(sl(n)). In the mean time, the number of 
parameters for the cyclic representation of the L(u) operator is also increased. On the 
other hand, the daerence expression of the Sklyanin algebra operator, which is highly 
lauded by Smith 1221, is the foundation [I] of representation theory for the n=2 case. 
We can make further study of t b i s  expression and compare it with its triangular limit, 
the quantum algebra. 

1.1. The intertwiner for A$?] IRF model and 2, symmetric vertex model and i f s  
,factorized YBE operator L(z) 

1.1.1. The Zn symmetric Belavin R-matrix and Sklyanin algebra (SA) .  For a given posi- 
tive integer n, we define n@n matrices g, h, I, : 
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If tbe Lj(z) could be expressed as 

L,(z)= w&+C)ps, 
a.% 

then the operator S, satisi5es Z. SA 

c Ca,9y(W. ~)Sa-,Sy=O 
Y 

where a, p ,  y e Z i ,  structure constant CnP,, operator S, is independent of the spectrum 
parameter z. On the other hand, we can find a solution Lj(z) of (4), if we have a 
representation of Sa satisfying (6), 

1.1.2. Cyclic representation state and the Boltzmann weight of the IRFmodel. According 
to Jmbo et a1 [ 6 ] ,  we have 

D- 1 W=@ v, q g c .  N 

j - 0  

We choose a set of canonical bases such that 

Zu,=Uj-l xu, = dUj q = erp($) 

then we have the cyclic representation space Wo 

w o = { W E W / Z @ .  . . z , - ] w = w } .  

This could be constructed from the base vector 
N -  1 

w m =  um,+h@.  . .@um,.,+k m = ( m o . .  . m,-,)EZ; , (7n) 
li=a 

obviously 

W h  .... m.-i)=w(mo+k .._. m,-i+li) 

hence w,,, can be uniquely described by the element in { Q} 
Q=Z$mod ZN(l,. . . , 1). 

We can choose from the equivalent msZL one with mo=O 

(0, mi, m i .  . . 
where mj = mj - mo mod N .  

Define 

[ml=(O, .  . . , mL-1) (8) 
then a base vector is determined by the n- 1 numbers mjeZ,. We may obtain [a] from 
a~given vector ae{wm};  the opposite is also true, so that is N"-I dimensional. 

Given any two states h, bc{wm}, they are called admissible if they satisfy 

(9) 
, . ,  with OGjGh-1 

~, 
[a] - [b] = [ej] mod Z% 

where ej=(O, . . . , 1 , O .  . .), 1 is at thejth place. 
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We write b=a-ej, for a given state a there are n states b satisfying this relation. 
D e h e  

where m, e,, ekcZc, N, A" coprime to each other 

1 " - l  

n p o  m, + W, 
f i . = m . - -  1 mik = fi, - m k  J J  

wj# wk mod N A  

We may also define Boltzmann weight 

if j#k .  

wf d c  b] 

t :I 
for a state configuration 

round a face by (a. b, c, de {w,}) 

Ibl if (a, b), (b, c), (a, d )  and (d, c) are admissible 
W;yc[a c d  b]=lK[ :cJ  [ d d  (12) 

0 otherwise. 

It can be shown that the non-vanishing FV is one of these in (lo), furthermore it 
is single-valued with respect to 2; (the right-hand side of (10) is invariant under 
mj+mi+N). 
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1.1.3. The intertwiner of face-vertex models and factorized L(z).  Jimbo et al [21,20] 
introduced the following intertwiner 

p&)="Yz) ,  . . . , p P ( z ) )  

if [m] - [ I ]  = ej 
otherwise 

This is a single-valued (with respect to m, I )  n-dimensional vector. For a given state m, 
there are n states such that pis non-vanishing. If different sets of numbers (mi,, . . .)E 
Z c ,  (&. . . ) E Z ~  represent the same state, then (13) gives an identical vector p&). 

Jimbo et a1 [21] showed that, if w=N'/N, the following is true: 

R(z'-z2)9ob(zl)@p6,(zZ)=C d %p:z [" 6]pi.(zl)@%b(z2). e (136) 

According to Bazhanov et a1 [ 171, if we could find a row vector 
+ - I )  

@ob(zd(z)=(@%zd, . . . , Vob (ZI) 

such that 

Consequently we have n 6, c', furthermore, we have 

c V W - ( k ) = 6 .  
b 

ob %b jk 

Proox From (1 3) 
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Then we multiply both sides from the left by p~&)@p&2) to give 

pd&l)@@',.s(z2P(~I-z2) 

Thus we have 

This is the cyclic L(z) obtained by Quano [20]. It generalizes the results of Hasegawa 
et al[16]. 

Remnrk. We can generalize the L(z) in (16) as follows: 
Put 9sb(z+<) instead of qob(z) in (IQ, then the resulting 

also satisfies YBE (5). 
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The @$:-&) which satisfies (14a) is the matrix element of the inverse of N@n 
matrix A ,  where A,j.=&.-,, i.e. 

@(O)(nzo) . . . @(O)(nz.-,) 

A = [  i . . .  
e(n-l)(nzo) . . . @(n-l) 

where nzj=z+nwmj. Thus 

&-&) =B@(z)/Det A 

where B, is the cofactor matrix of A,. It can be shown [20] that 

Det A =  CCO zj-pn n c&-z~ )  ti: 
where Cis a 2;-independent constant and p.= (n- 1)/2. 

2. Cy& and function difference representations of SA 

2.1. Cyclic representation of SA 

We now look for the Sa in (6) which corresponds to L(, . 
and 

(16). 

tr I&-’ =nSalp ,Garp2 

it is easy to show that { Ia }  forms a complete set of bases. Let 

m = c  W&) U, : operator 
a 

then 

1 
n 

U,(z)=- tr L(z)(za)-’, 

i I ,  is invertible, 

(20) 
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Consequently 

2 
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Let 

As 

f ( zo+ T )  =exp(-niT-Zni(nzo+ l))f(zo) 

f ( zo+ l)=exp(nnia) f(zo). 

Thusf(zo) has n zeros in A,, and the sum of the zeros is 

n- 1 C zeros=-. 
A ,  2 

As a function of zo, ~ ( Z O )  has n - 1 obvious zeros, zo = zl, 22, . . . ,z.- I ,  so the last 
zero is at zo=-z1-z2-. . .-z.-~. It is easy to check that the function 

has the same zeros as ~ ( z o ) .  As the function f(zo)/g(zo) is a double periodic pure 
function, it can only be a zo-independent constant, i.e. 

fO= c, 
gizo) 

The same analysis is also true for z;, i= 1,. . . , n- 1, so we finally have 

Applying this to (24) we have 
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a 2 ~ + 2 a l + n  n-1 
xexp(-: [a2(z+ + c+ w6 ---+ nejw - &w 

2 2 

nal 
2 

a2(z+ a + a$r + a l a 2 + - + n a 2 ~ j w  

Comparing this with (2) and ( 5 )  we can see that, aside from some insignificant 
terms such as [nu&+ w 6 - ( n -  1) /2) ] - ' ,  L(z) in (166) has the desired form of (6) ;  we 
can consequently write the matrix element of the cyclic representation of the SA 

(31) 
1 0, -+ (mj+ wj-mk- bvk)w 

oo[(mj+wj-mk-wk)w] 
[n" 

( & z ) m m - q - ( - l ) u ' ~ m  

(32) 
n n  



Cyclic function differences representation of Sklyatzin algebra 4961 

Equation (32) is invariant under a,+a,+n because 

U ~ + ( ~ ~ , ~ ~ ( Z ,  i) =(-IY exp(2iriqa2/n)oa(z, r )  P. G Z  
s,+sa as az-ta2+n 

Se+(-1)"xexp 2zi -+- x n  =Sa as al+al+n.  ( (: "n'! j 
Remark. Se, L(z) are operators acting on W" (see (7)), and their matrix elements are 
well defined on the standard bases w,,, given in (7a) (i.e. they are invariant under 
m,+m,+N, m>(l, 1,. . . , l)+m). 

2.2. Cocycle coeficient of the cyclic representation 

We can expand the SA in the following way: 
As Sklyanin algebra (6) is defined by second-order homogeneous equations with 

respect to S,, and the sum of the lower indices of two Ss are the same (mod n x n). 
There are only n states Im-ej), i = O ,  1,.  . . , n-1, from which we can get to Im) by 
acting S. on them, and there are n' states Im-e,-e[k]), i,  k=O, 1,. . . ,n-1, from 
which we can get to Im) by acting S& on them. The possible routes from Im> to 
Im-e,-e& are 

(a) i = k  

A(m, i, a -y )+A(m-e , ,  k, y)=B(m, i, k, a) (34) 

is independent of y ,  m-e , ,  then (6) is still true, we require 
with respect to m. a&, the simplest non-trivial choice is 

A(m, j ,  a)=6j+- (Ilal+i& 

to be well defined 

2zi 
n 

where 6 j ~  C, I , ,  1 2 ~ Z .  
The second term in our choice of A(m,j ,  a)  is actually the part isomorphic to Sklyanin 
algebra. Finally we have 
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in which we have the parameters SJ, c, wJ-wk. As, when 6,+Sj+ v, SL is essentially 
unchanged, we choose E6,=0, so we have 2n-1 independent parameters in the 
representation. 

It is remarkable that we cannot get rid of the coe5cient 

through a similar transformation, because as we take the sequence 
1 m -Nej>+. . . -P I m), the product of these coefficients does not give one. As the initial 
and the h a 1  states in the sequence are identical, similar transformation should give a 
trivial coefficient. 

is actually a cocycle coeiEcient on n-torus. 

2.3. Function difference representation of SA 

So far in our treatment we have restricted ourselves to the case where w=N'/N is 
rational, and we h d  that the representation is well defined on {Q}. We can ease our 
restrictions such that we associate each bases vector with (m), m = {mo, . . . , m.- ,} dn. 
The admissible condition is still (m) - (1) = (ej), i.e. mi-&= 6,. And we take (35) as 

Obviously we have 

c Cap,(Sa-r)(m)(nl)(lT,)(ml)(m") = 0. (36) 

According to Jimbo et ai 181, equation (36) holds irrespective of whether w is a 

Let (mj-wi)w=ui,  then (35) becomes 

7" 

rational number or not. 

(sa)m,m-e/(w) =(sdj(% w )  

Then (6) becomes 

(a) m"=m-2ei E ~ .~~~s . -7 ) * (u ) (sy ) i (uo ,  . . 1 , ui-w, . . . ) = O  
7 

+ (So- y ) k ( 4 ( s , ) , ( u o ,  . . . , UP- w,  . . .)I =o. 
As w, is generic, so is u z  {q}, and it is easy to see that (38) is true for generic U. 

& acting on fimctionf(u) =f(uo,. . . , ~ ~ - 1 )  as 
Next we consider the function difference representation of SA. Define the operator 

k f ( u ) = C  (S&u, wlf(uo , .  . . ,U"-!) 
I 



Cyclic function dzrerences representation of Skiyanin algebra 4963 

So (39) guarantees the identity 

1 c o p y ~ a - y ~ y f ( u ) = o .  
Y 

This is the function difference representation of SA. 
We now compare our results with those given by Sklyanin at n=2.  At n = 2 ,  we 

consider the function as f (u0 ,  ul)=f(2u) ,  where u0-ul=2u,uo+ul=2v. Let So=S,= 
xi, b = O ,  I*= 1 in (37). We then have 

so 

where f(Zu)=F(u), c/n=Iw. 
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where f (2u)  =F(u), ( /n=lw.  

a 2 , a l = l , 0 ;  1 , l ;Ol .  Wehave 
Let w/2=-q, remember that c~~(-q)=Ooo(-q)=-c~(q), ci(-q)=ut(q), i= 

&(U- Iq)F(u+ q )  - S=(-u-Zq)F(u-n) 
S,F(u) = 

OIl(2U) 

where S,, and the corresponding I,, S. are 

so0 = ell(q)e11(2U) so 
so1 = @10(q)&0(24 
s10= ~ o I ( q ) e o l ( 2 4  

S, = 

I1 --e00(~)e00(2u) 

where o;, cy, 0, are the Pauli matrices, and SO, SI, S2, S, are the corresponding 
Sklyanin operators. From the automorphism of Sklyanin (SO, SI, S2, S3)- 

(SO, S,, -S2,  SI), we have 

s6= e,l(q)elI(2u) s;= e l o ~ ~ ~ ~ l o ~ w  

si= ecQ(q)ew(w s; = e01~q)e01(2u). 

L(z)=C W.(Z)O.s:: 

Comparing $ with SL used by Sklyanin 

we see that iS;=X, S;=q, j = O ,  1,3. 
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